Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675241

RESUMO

Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/ß-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.


Assuntos
Anti-Helmínticos , Salicilanilidas , Humanos , Salicilanilidas/farmacologia , Salicilanilidas/química , Niclosamida/farmacologia , Anti-Helmínticos/farmacologia , Transdução de Sinais
2.
J Biol Chem ; 298(10): 102417, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037967

RESUMO

Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency-approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket-binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the "NC pocket" (residues 50-150) of HγD and one spanning the "NC tail" (residues 56-61 to 168-174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.


Assuntos
Materiais Biomiméticos , Catarata , Cristalino , Chaperonas Moleculares , Agregação Patológica de Proteínas , Salicilanilidas , Xantonas , alfa-Cristalinas , gama-Cristalinas , Animais , Bovinos , Humanos , Camundongos , alfa-Cristalinas/metabolismo , Catarata/tratamento farmacológico , Catarata/prevenção & controle , Catarata/genética , gama-Cristalinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Acoplamento Molecular , Naftalenos/metabolismo , Ácidos Sulfônicos/metabolismo , Salicilanilidas/química , Salicilanilidas/farmacologia , Salicilanilidas/uso terapêutico , Xantonas/química , Xantonas/farmacologia , Xantonas/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/uso terapêutico
3.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164028

RESUMO

Combination therapy of many anthelmintic drugs has been used to achieve fast animal curing. Q-DRENCH is an oral suspension, containing four different active drugs against GIT worms in sheep, commonly used in Australia and New Zeeland. The anti-parasitic drugs are Albendazole (ALB), Levamisole HCl (LEV), Abamectin (ABA), and Closantel (CLO). The main purpose of this study is to present a new simultaneous stability-indicting HPLC-DAD method for the analysis of the four drugs. The recommended liquid system was 1 mL of Triethylamine/L water, adjusting the pH to 3.5 by glacial acetic acid: acetonitrile solvent (20:80, v/v). Isocratic elusion achieved the desired results of separation at a 2 mL/min flow rate using Zorbax C-18 as a stationary phase. Detection was performed at 210 nm. The linearity ranges were 15.15 to 93.75 µg/mL for ALB, 25 to 150 µg/mL for LEV, 30 to 150 µg/mL for ABA, and 11.7 to 140.63 µg/mL for CLO. Moreover, the final greenness score was 0.62 using the AGREE tool, which reflects the eco-friendly nature. Moreover, the four drugs were determined successfully in the presence of their stressful degradation products. This work presents the first chromatographic method for simultaneous analysis for Q-DRENCH oral suspension drugs in the presence of their stressful degradation products.


Assuntos
Albendazol/análise , Ivermectina/análogos & derivados , Levamisol/análise , Salicilanilidas/análise , Administração Oral , Albendazol/administração & dosagem , Albendazol/química , Albendazol/farmacocinética , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/análise , Anti-Helmínticos/química , Anti-Helmínticos/farmacocinética , Austrália , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Estudos de Avaliação como Assunto , Ivermectina/administração & dosagem , Ivermectina/análise , Ivermectina/química , Ivermectina/farmacocinética , Levamisol/administração & dosagem , Levamisol/química , Levamisol/farmacocinética , Limite de Detecção , Nova Zelândia , Salicilanilidas/administração & dosagem , Salicilanilidas/química , Salicilanilidas/farmacocinética , Ovinos , Suspensões
4.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885866

RESUMO

Closantel is an antiparasitic drug marketed in a racemic form with one chiral center. It is meaningful to develop a method for separating and analyzing the closantel enantiomers. In this work, two enantiomeric separation methods of closantel were explored by normal-phase high-performance liquid chromatography. The influences of the chiral stationary phase (CSP) structure, the mobile phase composition, the nature and proportion of different mobile phase modifiers (alcohols and acids), and the column temperature on the enantiomeric separation of closantel were investigated in detail. The two enantiomers were successfully separated on the novel CSP of isopropyl derivatives of cyclofructan 6 and n-hexane-isopropanol-trifluoroacetic acid (97:3:0.1, v/v/v) as a mobile phase with a resolution (Rs) of about 2.48. The enantiomers were also well separated on the CSP of tris-carbamates of amylose with a higher Rs (about 3.79) when a mixture of n-hexane-isopropanol-trifluoroacetic acid (55:45:0.1, v/v/v) was used as mobile phase. Thus, the proposed separation methods can facilitate molecular pharmacological and biological research on closantel and its enantiomers.


Assuntos
Salicilanilidas/química , Salicilanilidas/isolamento & purificação , Ácidos/química , Álcoois/química , Amilose/análogos & derivados , Amilose/química , Cromatografia Líquida de Alta Pressão , Fenilcarbamatos/química , Estereoisomerismo , Temperatura
5.
ChemMedChem ; 16(18): 2817-2822, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34109743

RESUMO

Hypertension is an important target for drug discovery. We have focused on the with-no-lysine kinase (WNK)-oxidative stress-responsive 1 (OSR1) and STE20/SPS1-related proline-alanine-rich protein kinase (SPAK)-NaCl cotransporter (NCC) signal cascade as a potential target, and we previously developed a screening system for inhibitors of WNK-OSR1/SPAK-NCC signaling. Herein we used this system to examine the structure-activity relationship (SAR) of salicylanilide derivatives as SPAK kinase inhibitors. Structural design and development based on our previous hit compound, aryloxybenzanilide derivative 2, and the veterinary anthelmintic closantel (3) led to the discovery of compound 10 a as a potent SPAK inhibitor with reduced toxicity. Compound 10 a decreased the phosphorylation level of NCC in mouse kidney in vivo, and appears to be a promising lead compound for a new class of antihypertensive drugs.


Assuntos
Anti-Hipertensivos/farmacologia , Desenvolvimento de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Salicilanilidas/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Salicilanilidas/síntese química , Salicilanilidas/química , Relação Estrutura-Atividade
6.
Nat Commun ; 12(1): 3061, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031399

RESUMO

The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro), critical for viral replication, is a key target for therapeutic development. An organoselenium drug called ebselen has been demonstrated to have potent Mpro inhibition and antiviral activity. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of derivatives. A free selenium atom bound with cysteine of catalytic dyad has been revealed in crystallographic structures of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target engagement with selenation mechanism of inhibition suggests wider therapeutic applications of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses.


Assuntos
Azóis/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Azóis/química , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Cisteína/química , Hidrólise , Isoindóis , Modelos Moleculares , Compostos Organosselênicos/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Padrões de Referência , SARS-CoV-2/efeitos dos fármacos , Salicilanilidas/química , Salicilanilidas/farmacologia , Selênio/metabolismo
7.
Bioorg Med Chem ; 40: 116129, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971488

RESUMO

Over the past few decades, an increasing variety of molecular chaperones have been investigated for their role in tumorigenesis and as potential chemotherapeutic targets; however, the 60 kDa Heat Shock Protein (HSP60), along with its HSP10 co-chaperone, have received little attention in this regard. In the present study, we investigated two series of our previously developed inhibitors of the bacterial homolog of HSP60/10, called GroEL/ES, for their selective cytotoxicity to cancerous over non-cancerous colorectal cells. We further developed a third "hybrid" series of analogs to identify new candidates with superior properties than the two parent scaffolds. Using a series of well-established HSP60/10 biochemical screens and cell-viability assays, we identified 24 inhibitors (14%) that exhibited > 3-fold selectivity for targeting colorectal cancer over non-cancerous cells. Notably, cell viability EC50 results correlated with the relative expression of HSP60 in the mitochondria, suggesting a potential for this HSP60-targeting chemotherapeutic strategy as emerging evidence indicates that HSP60 is up-regulated in colorectal cancer tumors. Further examination of five lead candidates indicated their ability to inhibit the clonogenicity and migration of colorectal cancer cells. These promising results are the most thorough analysis and first reported instance of HSP60/10 inhibitors being able to selectively target colorectal cancer cells and highlight the potential of the HSP60/10 chaperonin system as a viable chemotherapeutic target.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Chaperonina 10/antagonistas & inibidores , Chaperonina 60/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Salicilanilidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzoxazóis/síntese química , Benzoxazóis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Salicilanilidas/síntese química , Salicilanilidas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
J Med Chem ; 63(13): 6898-6908, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32482070

RESUMO

Clostridioides difficile infection (CDI) causes serious and sometimes fatal symptoms like diarrhea and pseudomembranous colitis. Although antibiotics for CDI exist, they are either expensive or cause recurrence of the infection due to their altering the colonic microbiota, which is necessary to suppress the infection. Here, we leverage a class of known membrane-targeting compounds that we previously showed to have broad inhibitory activity across multiple Clostridioides difficile strains while preserving the microbiome to develop an efficacious agent. A new series of salicylanilides was synthesized, and the most potent analog was selected through an in vitro inhibitory assay to evaluate its pharmacokinetic parameters and potency in a CDI mouse model. The results revealed reduced recurrence of CDI and diminished disturbance of the microbiota in mice compared to standard-of-care vancomycin, thus paving the way for novel therapy that can potentially target the cell membrane of C. difficile to minimize relapse in the recovering patient.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridioides difficile/fisiologia , Infecções por Clostridium/tratamento farmacológico , Salicilanilidas/química , Salicilanilidas/farmacologia , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Segurança , Salicilanilidas/farmacocinética , Salicilanilidas/uso terapêutico , Distribuição Tecidual
9.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408543

RESUMO

Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF3 at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.


Assuntos
Anilidas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Naftóis/química , Anilidas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Salicilanilidas/química , Salicilanilidas/farmacologia , Relação Estrutura-Atividade , Superóxidos/metabolismo , Células THP-1
10.
Acta Biochim Biophys Sin (Shanghai) ; 52(4): 401-410, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32259210

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common category and disease entity of non-Hodgkin lymphoma. Osalmide and pterostilbene are natural products with anticancer activities via different mechanism. In this study, using a new synthetic strategy for the two natural products, we obtained the compound DCZ0801, which was previously found to have anti-multiple myeloma activity. We performed both in vitro and in vivo assays to investigate its bioactivity and explore its underlying mechanism against DLBCL cells. The results showed that DCZ0801 treatment gave rise to a dose- and time-dependent inhibition of cell viability as determined by CCK-8 assay and flow cytometry assay. Western blot analysis results showed that the expression of caspase-3, caspase-8, caspase-9 and Bax was increased, while BCL-2 and BCL-XL levels were decreased, which suggested that DCZ0801 inhibited cell proliferation and promoted intrinsic apoptosis. In addition, DCZ0801 induced G0/G1 phase arrest by downregulating the protein expression levels of CDK4, CDK6 and cyclin D1. Furthermore, DCZ0801 exerted an anti-tumor effect by down-regulating the expressions of p-PI3K and p-AKT. There also existed a trend that the expression of p-JNK and p-P38 was restrained. Intraperitoneal injection of DCZ0801 suppressed tumor development in xenograft mouse models. The preliminary metabolic study showed that DCZ0801 displayed a rapid metabolism within 30 min. These results demonstrated that DCZ0801 may be a new potential anti-DLBCL agent in DLBCL therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Ciclofosfamida/química , Ciclofosfamida/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Salicilanilidas/química , Salicilanilidas/farmacologia , Estilbenos/química , Estilbenos/farmacologia
11.
J Med Chem ; 63(11): 6164-6178, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32345019

RESUMO

Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 µM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 µM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X1/metabolismo , Salicilanilidas/química , Regulação Alostérica/efeitos dos fármacos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sítios de Ligação , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Colágeno , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Dinâmica Molecular , Agregação Plaquetária/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/química , Salicilanilidas/metabolismo , Salicilanilidas/farmacologia , Relação Estrutura-Atividade
12.
J Antibiot (Tokyo) ; 73(6): 392-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32132676

RESUMO

Clostridium difficile is a leading cause of morbidity and mortality particularly in hospital settings. In addition, treatment is very challenging due to the scarcity of effective therapeutic options. Thus, there remains an unmet need to identify new therapeutic agents capable of treating C. difficile infections. In the current study, we screened two FDA-approved drug libraries against C. difficile. Out of almost 3200 drugs screened, 50 drugs were capable of inhibiting the growth of C. difficile. Remarkably, some of the potent inhibitors have never been reported before and showed activity in a clinically achievable range. Structure-activity relationship analysis of the active hits clustered the potent inhibitors into four chemical groups; nitroimidazoles (MIC50 = 0.06-2.7 µM), salicylanilides (MIC50 = 0.2-0.6 µM), imidazole antifungals (MIC50 = 4.8-11.6 µM), and miscellaneous group (MIC50 = 0.4-22.2 µM). The most potent drugs from the initial screening were further evaluated against additional clinically relevant strains of C. difficile. Moreover, we tested the activity of potent inhibitors against representative strains of human normal gut microbiota to investigate the selectivity of the inhibitors towards C. difficile. Overall, this study provides a platform that could be used for further development of potent and selective anticlostridial antibiotics.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Imidazóis/farmacologia , Nitroimidazóis/farmacologia , Salicilanilidas/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Aprovação de Drogas , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Testes de Sensibilidade Microbiana , Nitroimidazóis/administração & dosagem , Nitroimidazóis/química , Salicilanilidas/administração & dosagem , Salicilanilidas/química , Relação Estrutura-Atividade , Estados Unidos , United States Food and Drug Administration
13.
Eur J Med Chem ; 181: 111578, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401536

RESUMO

The research of novel antimycobacterial drugs represents a cutting-edge topic. Thirty phenolic N-monosubstituted carbamates, derivatives of salicylanilides and 4-chlorophenol, were investigated against Mycobacterium tuberculosis H37Ra, H37Rv including multidrug- and extensively drug-resistant strains, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium aurum and Mycobacterium smegmatis as representatives of nontuberculous mycobacteria (NTM) and for their cytotoxic and cytostatic properties in HepG2 cells. Since salicylanilides are multi-targeting compounds, we determined also inhibition of mycobacterial isocitrate lyase, an enzyme involved in the maintenance of persistent tuberculous infection. The minimum inhibitory concentrations were from ≤0.5 µM for both drug-susceptible and resistant M. tuberculosis and from ≤0.79 µM for NTM with no cross-resistance to established drugs. The presence of halogenated salicylanilide scaffold results into an improved activity. We have verified that isocitrate lyase is not a key target, presented carbamates showed only moderate inhibitory activity (up to 18% at a concentration of 10 µM). Most of the compounds showed no cytotoxicity for HepG2 cells and some of them were without cytostatic activity. Cytotoxicity-based selectivity indexes of several carbamates for M. tuberculosis, including resistant strains, were higher than 125, thus favouring some derivatives as promising features for future development.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Carbamatos/química , Carbamatos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/síntese química , Carbamatos/síntese química , Células Hep G2 , Humanos , Isocitrato Liase/antagonistas & inibidores , Isocitrato Liase/metabolismo , Mycobacterium tuberculosis/enzimologia , Fenóis/síntese química , Fenóis/química , Fenóis/farmacologia , Salicilanilidas/síntese química , Salicilanilidas/química , Salicilanilidas/farmacologia , Tuberculose/tratamento farmacológico
14.
Bioorg Med Chem Lett ; 29(9): 1106-1112, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30852084

RESUMO

All living organisms contain a unique class of molecular chaperones called 60 kDa heat shock proteins (HSP60 - also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus - MRSA). Intriguingly, during our studies we found that three known antibiotics - suramin, closantel, and rafoxanide - were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.


Assuntos
Produtos Biológicos/química , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Rafoxanida/química , Salicilanilidas/química , Suramina/química , Produtos Biológicos/metabolismo , Chaperonina 10/antagonistas & inibidores , Chaperonina 60/antagonistas & inibidores , Escherichia coli/metabolismo , Humanos , Concentração Inibidora 50 , Dobramento de Proteína , Rafoxanida/metabolismo , Salicilanilidas/metabolismo , Suramina/metabolismo
15.
Exp Parasitol ; 199: 74-79, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840851

RESUMO

Paramphistomes are important parasites in veterinary medicine. There are few anthelmintic drugs available against them. The development of new drugs is urgently needed and this process can be accelerated through the development of rodent models for in vivo testing. Among the few paramphistomes that develop in rodents is the caecal fluke Zygocotyle lunata, a species with which several biological studies have been performed over several decades. Nevertheless, its use as a model for evaluation of anthelmintic drugs had not yet been evaluated. In the present study, we evaluated the efficacy of praziquantel (PZQ 300 mg/kg 5x), albendazole (ABZ 200 mg/kg 5x) and closantel (CLO 50 mg/kg single dose, 50 mg/kg 3x and 25 mg/kg 3x) for treatment of mice experimentally infected with Z. lunata. The animals were infected with 20 metacercariae of the parasite and were treated 30 days post-infection. Untreated groups were maintained as controls. Seven days after the treatments, the animals were euthanized for recovery and counting of parasites. We found that PZQ and ABZ, at the dosages and therapeutic schedule employed here, did not cause significant alterations in worm burden [worm counts 16.0 ±â€¯2.8 (13-19), 17.6 ±â€¯2.1 (14-19) and 16.2 ±â€¯1.9 (13-18) (p = 0.51) in PZQ, ALB and control, respectively]. CLO 50 mg/kg in a single dose caused significant reduction in the number of parasites [treated: 1.8 ±â€¯0.9 (1-3); control: 15.6 ±â€¯2.5 (12-19)], although it did not result in complete elimination of the parasites in any animal. Despite the fact that three doses of CLO 50 mg/kg or CLO 25 mg/kg caused complete elimination of the parasites in most surviving animals, there was significant host mortality. In general, results here obtained are concordant with those of studies performed on ruminant paramphistomes. Given that Z. lunata can be maintained in laboratory rodents, it is a suitable model for screening anthelmintic drugs against paramphistomes.


Assuntos
Albendazol/uso terapêutico , Anti-Helmínticos/uso terapêutico , Paramphistomatidae/efeitos dos fármacos , Praziquantel/uso terapêutico , Salicilanilidas/uso terapêutico , Infecções por Trematódeos/tratamento farmacológico , Albendazol/química , Albendazol/farmacologia , Análise de Variância , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Fezes/parasitologia , Masculino , Camundongos , Paramphistomatidae/classificação , Paramphistomatidae/isolamento & purificação , Praziquantel/química , Praziquantel/farmacologia , Salicilanilidas/química , Salicilanilidas/farmacologia , Infecções por Trematódeos/parasitologia
16.
Bioorg Chem ; 80: 668-673, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059892

RESUMO

Based on the presence of carbamate moiety, twenty salicylanilide N-monosubstituted carbamates concomitantly with their parent salicylanilides and five newly prepared 4-chlorophenyl carbamates obtained from isocyanates were investigated using Ellman's method for their in vitro inhibitory activity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum. The carbamates and salicylanilides exhibited mostly a moderate inhibition of both cholinesterase enzymes with IC50 values ranging from 5 to 235 µM. IC50 values for AChE were in a narrower concentration range when compared to BChE, but many of the compounds produced a balanced inhibition of both cholinesterases. The derivatives were comparable or superior to rivastigmine for AChE inhibition, but only a few of carbamates also for BChE. Several structure-activity relationships were identified, e.g., N-phenethylcarbamates produce clearly favourable BChE inhibition. The compounds also share convenient physicochemical properties for CNS penetration.


Assuntos
Clorofenóis/química , Clorofenóis/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Salicilanilidas/química , Salicilanilidas/farmacologia , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Carbamatos/química , Carbamatos/farmacologia , Electrophorus , Cavalos , Concentração Inibidora 50 , Relação Estrutura-Atividade
17.
J Am Chem Soc ; 140(8): 2752-2755, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29411975

RESUMO

The rise of antibiotic resistance has created a mounting crisis across the globe and an unmet medical need for new antibiotics. As part of our efforts to develop new antibiotics to target the uncharted surface bacterial transglycosylase, we report an affinity-based ligand screen method using penicillin-binding proteins immobilized on beads to selectively isolate the binders from complex natural products. In combination with mass spectrometry and assays with moenomycin A and salicylanilide analogues (1-10) as reference inhibitors, we isolated four potent antibacterials confirmed to be benastatin derivatives (11-13) and albofungin (14). Compounds 11 and 14 were effective antibiotics against a broad-spectrum of Gram-positive and Gram-negative bacteria, including Acinetobacter baumannii, Clostridium difficile, Staphylococcus aureus, and drug-resistant strains with minimum inhibitory concentrations in the submicromolar to nanomolar range.


Assuntos
Antibacterianos/farmacologia , Bambermicinas/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosiltransferases/antagonistas & inibidores , Salicilanilidas/farmacologia , Xantenos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bambermicinas/química , Bambermicinas/isolamento & purificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/enzimologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Glicosiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Salicilanilidas/química , Salicilanilidas/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Xantenos/química , Xantenos/isolamento & purificação
18.
Eur J Med Chem ; 133: 152-173, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28384546

RESUMO

Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen that can survive in host cells, mainly in macrophages. An increase of multidrug-resistant tuberculosis qualifies this infectious disease as a major public health problem worldwide. The cellular uptake of the antimycobacterial agents by infected host cells is limited. Our approach is to enhance the cellular uptake of the antituberculars by target cell-directed delivery using drug-peptide conjugates to achieve an increased intracellular efficacy. In this study, salicylanilide derivatives (2-hydroxy-N-phenylbenzamides) with remarkable antimycobacterial activity were conjugated to macrophage receptor specific tuftsin based peptide carriers through oxime bond directly or by insertion of a GFLG tetrapeptide spacer. We have found that the in vitro antimycobacterial activity of the salicylanilides against M. tuberculosis H37Rv is preserved in the conjugates. While the free drug was ineffective on infected macrophage model, the conjugates were active against the intracellular bacteria. The fluorescently labelled peptide carriers that were modified with different fatty acid side chains showed outstanding cellular uptake rate to the macrophage model cells. The conjugation of the salicylanilides to tuftsin based carriers reduced or abolished the in vitro cytostatic activity of the free drugs with the exception of the palmitoylated conjugates. The conjugates degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked salicylanilide-amino acid fragment as the smallest active metabolite.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Salicilanilidas/química , Salicilanilidas/farmacologia , Tuftsina/análogos & derivados , Tuftsina/farmacologia , Animais , Antituberculosos/farmacocinética , Linhagem Celular , Humanos , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Ratos , Salicilanilidas/farmacocinética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuftsina/farmacocinética
19.
Mol Cancer Ther ; 16(4): 578-590, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138036

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is involved in the tumor growth and metastasis of human head and neck squamous cell carcinoma (HNSCC) and is therefore a target with therapeutic potential. In this study, we show that HJC0152, a recently developed anticancer agent and a STAT3 signaling inhibitor, exhibits promising antitumor effects against HNSCC both in vitro and in vivo via inactivating STAT3 and downstream miR-21/ß-catenin axis. HJC0152 treatment efficiently suppressed HNSCC cell proliferation, arrested the cell cycle at the G0-G1 phase, induced apoptosis, and reduced cell invasion in both SCC25 and CAL27 cell lines. Moreover, HJC0152 inhibited nuclear translocation of phosphorylated STAT3 at Tyr705 and decreased VHL/ß-catenin signaling activity via regulation of miR-21. Loss of function of VHL remarkably compromised the antitumor effect of HJC0152 in both cell lines. In our SCC25-derived orthotopic mouse models, HJC0152 treatment significantly abrogated STAT3/ß-catenin expression in vivo, leading to a global decrease of tumor growth and invasion. With its favorable aqueous solubility and oral bioavailability, HJC0152 holds the potential to be translated into the clinic as a promising therapeutic strategy for patients with HNSCC. Mol Cancer Ther; 16(4); 578-90. ©2017 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Salicilanilidas/administração & dosagem , beta Catenina/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Niclosamida/análogos & derivados , Salicilanilidas/química , Salicilanilidas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Bioorg Med Chem ; 25(4): 1524-1532, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28126437

RESUMO

Salicylanilides have proved their activity against tuberculosis (TB). One weak electron-withdrawing substituent is favored at the salicylic part, specially Cl or Br atoms at positions 4 or 5. On the other hand, the antimycobacterial activity of salicylanilides is negatively affected when a strong electron-withdrawing substituent (NO2) is present at the same positions. Herein we describe the synthesis and characterization of novel salicylanilides possessing two weak electron-withdrawing groups (halogen atoms) at their salicylic part and compare their antitubercular activity with their monohalogenated analogues. All dihalogenated derivatives proved to possess antitubercular activity at a very narrow micromolar range (MIC=1-4µM), similar with their most active monohalogenated analogues. More importantly, the most active final molecules were further screened against multidrug resistant strains and found to inhibit their growth at the range of 0.5-4µM.


Assuntos
Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Salicilanilidas/farmacologia , Salicilatos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/síntese química , Antituberculosos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/crescimento & desenvolvimento , Salicilanilidas/síntese química , Salicilanilidas/química , Salicilatos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...